Membrane tension of red blood cells pairwisely interacting in simple shear flow.
نویسندگان
چکیده
Flow-induced membrane tension contributes to the release of molecules by red blood cells (RBCs), and extremely high tension may cause haemolysis. Here, we investigated the membrane tension of RBCs during pairwise interactions in simple shear flow, given that pairwise interactions form the basis of many-body interactions. RBCs were modelled as capsules with a two-dimensional hyperelastic membrane, and large deformations were solved by the finite element method. Due to the small size of the RBCs, surrounding fluid motion was estimated as a Stokes flow and solved by the boundary element method. The results showed that the maximum isotropic tension appeared around the dimple of the biconcave surface and not around the rim. A comparison of the results with solitary cases indicated that the maximum principal tension and isotropic tension were significantly increased by cell-cell interaction effects. As the volume fraction of RBCs is large under physiological conditions, as well as in blood flow in vitro, cell-cell interactions must be analysed carefully when considering mechanotransduction and haemolysis in blood flow.
منابع مشابه
Tension of red blood cell membrane in simple shear flow.
When a red blood cell (RBC) is subjected to an external flow, it is deformed by the hydrodynamic forces acting on its membrane. The resulting elastic tensions in the membrane play a key role in mechanotransduction and govern its rupture in the case of hemolysis. In this study, we analyze the motion and deformation of an RBC in a simple shear flow and the resulting elastic tensions on the membra...
متن کاملInfluence of deformability of human red cells upon blood viscosity.
The viscosity of blood at high rates of shear is unusually low compared to other suspensions of similar concentration. The underlying mechanisms were studied by rotational viscometry, red cell filtration, viscometry of packed cells and direct microscopic observation of red cells under flow in a transparent cone plate viscometer. Deformability of red cells was altered osmotically or abolished by...
متن کاملOptimized Method for Reticulocyte Counting: Simple, Accurate, and Comparable to Flow Cytometry
Background: Reticulocytes are immature red blood cells with RNA, spending the final stages of their maturation in the peripheral blood. The number of reticulocytes in the peripheral blood is the salient evidence of the effectiveness of bone marrow to produce red blood cells. Currently, reticulocyte count is done manually or automatically in clinical laboratories. Difficulties and limitations of...
متن کاملChaotic dynamics of red blood cells in a sinusoidal flow.
We show that the motion of individual red blood cells in an oscillating moderate shear flow is described by a nonlinear system of three coupled oscillators. Our experiments reveal that the cell tank treads and tumbles either in a stable way with synchronized cell inclination, membrane rotation and hydrodynamic oscillations, or in an irregular way, very sensitively to initial conditions. By adap...
متن کاملMicrovascular blood flow resistance: Role of red blood cell migration and dispersion.
Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of bl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 46 3 شماره
صفحات -
تاریخ انتشار 2013